Deploy a Full Stack Web App to Azure Kubernetes
Service with Dockerhub Images

- Ismail Shaikh (Senior Cloud Engineer)

aw

(p
il [[UE
ill_Jil

Introduction

In this blog i will walk you through the process of getting a full-stack application up and running on AKS. Our sample
calculator app has a separated React frontend and Flask backend. Both of them are built through Docker and pushed

to Docker Hub but first we will start with basic understanding

What is Kubernetes?

Kubernetes is an open source container orchestrator that automates many tasks involved in deploying, managing, and

scaling containerized applications.
What is Azure Kubernetes Service?

Azure Kubernetes Service is a managed container orchestration service based on the open source Kubernetes system,
which is available on the Microsoft Azure public cloud. Using AKS simplifies the process of running Kubernetes on
Azure without needing to install or maintain your own Kubernetes control plane. An organization can use AKS to
handle critical functionality such as deploying, scaling and managing Docker containers and container-based

applications.It provides a hosted Kubernetes cluster that you can deploy your microservices to.
Pre-Requisiste :
. Azure Kubernetes Service

o NGINX Ingress Controller

° Azure CLI

° Kubectl, Helm

° React frontend, Flask backend

Overview

We will create two Kubernetes deployments, one for the React frontend and the other for the Flask API. Two

Kubernetes services will also be created for us to access the deployed application.

After having both frontend and backend running on AKS cluster, we will create an ingress resource to route traffic to
each application. By using an ingress controller and ingress rules, a single IP address can be used to route traffic to

multiple services in a Kubernetes cluster.

—
Q, Search Docker Hub Explore Repositories Organizations Help ~ ’(g.:m\ shaikh1996 +

shaikh1996 - Search by repository name Q All Content - Create repository

shaikh1996 / calculater-api

w0 21 Public
Contains: Image | Last pushed: an hour ago ®

shaikh1996 / calculater-site

¥ 0 L Public
Contains: Image | Last pushed: an hour ago ®

kubernetes

Service 1 Service 2

f
|
|
|
|
|
|
|

Ingress — 'f_—
[Pod | (Pod |
Cont:roller llm ll

HE |

e

o

L e ——4

Getting Started
Step 1:- Create AKS Cluster

The first thing we have to do is create an AKS cluster. After creating a resource group in your preferred region, we can
create an AKS cluster with a similar method. Personally, I like to create it with the UI, which is a pretty straightforward
approach with the friendly Azure Portal Interface. Or you can also create it with Azure CLI following the Microsoft

Docs.

= Microsoft Azure & Search resources, services, and docs (G+/)

Home » Kubernetes services >

Create Kubernetes cluster

Basics Mode pools Metworking Integrations Advanced Tags Review + create

Azure Kubernetes Service (AKS) manages your hosted Kubernetes environment, making it quick and easy to deploy and
manage containerized applications without container orchestration expertize. It also eliminates the burden of ongoing
operations and maintenance by provisioning, upgrading, and scaling resources on demand, without taking your applications
offline, Learn more

Project details

Select a subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage all
yOur resaurces.

Subscription * (O | Microsoft Azure Sponsorship e |

Resource group * (0 | {New) Aks-calculator V |
Create new

Cluster details

Cluster preset configuration DevyTest hd
To quickly customize your Kubernetes cluster, choose one of the preset
configurations abowve. You can modify these configurations at any time.

Learn more and compare presets

Kubernetes cluster name * (O | Calculator /|
Region * (1) | (Asia Pacific) Central India e |
fvailability zones (0 | Zones 1,23 R |
AKS pricing tier (D) | Free hd |
Kubernetes version * (0 | 1.26.6 (default) e |
Automatic upgrade (D | Enabled with patch (recommended) ~ |

Choose between local accounts or Azure AD for authentication and Azure RBAC or Kubernetes RBAC for vour authorization

< Previous | | Mext : Node pools = | Review + create

In the next step we will create out own customize node pole.

Home > Kubernetes services > Create Kubernetes cluster

Add a node pool

Calculator
Mode pool name * (& ‘ basicnode
Made * @ ® user
O System
0S5 type @ '@) Linux
@ Windows node pools are not supported on kubenet clusters
Availability zones @ ‘ Mane hd
Enable Azure Spot instances (@ I:\
Mode size ® (O Standard D2s v3
2 vcpus, & GIE memaory
Choose a size
- =
Scale method (@ (®) Manual

O Autoscale - Recommended

€@ This option is recommended so that the cluster is automatically sized correctly
far the current running workloads.

Node count * (@ ‘ 1

Optional settings

Max pods per node * (1) ‘ 10

Enable public IP per node (0 B

Add
https://portal.azure.com/#home

Step 2:- Connect to Cluster

We will use kubectl to manage the Kubernetes cluster. Run the command below in Azure CLI Powershell Mode to

configure kubectl and connect to the cluster we previously created.

az aks get-credentials --resource-group YourResourceGroup --name Calculator

Home > microsoft.aks-20230917164337 | Overview >

&= calculator = % - X

b Kubernetes service

‘}3 Search ‘ « <+ Create v ¥ Connect O Stop il Delete () Refresh Open in mobile 2 Give feedback

= Overview " Resource group Kubernetes version |

Linux 1.26.6
Bl Activitylog Status AP| server address
8a Access control (IAM) Succeeded (Running) calculator-dns-uafdgq9o.hcp.centralindia.azmk8s.io
N Location Network type (plugin)

¢ Tags v Central India Azure CNI 4

Powershell v & 2 & [a M O B — 0O X

ructions "https://aka.ms/RegisterCloudShell” to register. In future, unregistered subscriptions will have restricted access to CloudShell service

MOTD: Azure Cloud Shell now includes Predictive IntelliSense! Learn more: https://aka.ms/CloudShell/IntelliSense

VERBOSE: Authenticating to Azure ...

VERBOSE: Building your Azure drive ...

PS /home/unified> 1s

clouddrive Microsoft

PS /home/unified> az aks get-credentials - U up e calculator
Merged "calculator" as current context in /home/unified/.kube/config

Ps /home/unified> []

Step 3:- Create an NGINX Ingress Controller

Create a K8s namespace for the ingress resources
kubectl create namespace ingress-calc

Add the ingress-nginx repository
helm repo add ingress—-nginx https://kubernetes.github.io/ingress-nginx

Use Helm to deploy an NGINX ingress controller
helm install nginx-ingress ingress-nginx/ingress—-nginx \
-—-namespace ingress-calc \
--set controller.replicaCount=2 \
--set controller.nodeSelector."beta\.kubernetes\.io/os"=1linux \
--set defaultBackend.nodeSelector."beta\.kubernetes\.io/os"=1inux

Step 4:- Run the Application

® Application is deployed by applying a YAML file to the cluster. The two deployments and each corresponding

service are created using the YAML file below.

® In this example, we create this file by typing code calculator.yami on Azure CLI. Paste the manifest below and save
it. Please note that on line 17 and line 54, we are pulling the prebuilt image from Docker Hub. Feel free to use your

own image.

apiVersion: apps/vl
kind: Deployment
metadata:
name: api
spec:
replicas: 3
selector:
matchLabels:
app: api
template:
metadata:
labels:
app: api
spec:
containers:
api
shaikh1996/calculator_api:latest

requ 8
cpu: 100m

memory: 128Mi
limits:

cpu: 250m

memory: 256Mi

ainerPort: 80

apiVersion: vi
kind: Service
metadata:
name: api
spec:
ports:
- port: 80
selector:

app: api

apiVersion: apps/vl
kind: Deployment
metadata:

name: website

: website

: website

: website
: shaikh1996/calculator_site:latest

. 1oom
: 128Mi

: 250m
1 256Mi

: 3000

vl
: Service

: website

: 3000

. website
® Run the frontend and backend in the namespace we created using kubect1 apply

kubectl apply -f calculator.yaml --namespace ingress-calc

PS /home/unified> kubectl apply -f calculator.yaml --nam e ingress-calc
deployment.apps/api created

service/api created

deployment.apps/website created

service/website created

PS /home/unified> []

Step 6:- Create an Ingress Route

Both the frontend and backend are now running on the Kubernetes Cluster. Now we create an ingress resource to

configure the rules that route traffic to our website and API. Run code ingress.yaml

: networking.k8s.io/v1
: Ingress

: calculator-ingress
: ingress-calc

2 /(%)

: ImplementationSpecific

: website

: 3000

: Japi/?(.*)

: ImplementationSpecific

We route the traffic from the root URL to our website service. Similarly, we route the traffic from /api to our API service.

® Apply this command to create the ingress resource

kubectl apply -f ingress.yaml

® The Kubernetes load balancer service is created for the NGINX ingress controller, we can access our app with the

assigned dynamic public IP address.

kubectl --namespace ingress-calc get services -o wide -w nginx-ingress-ingress-
nginx-controller

® Open up your browser go to the external ip address and boom.

Powershell v (b ? & [™M O B — 0 X

PS /home/unified> kubectl apply -f ingress.yaml
ingress.networking.k8s.io/calculator-ingress created
PS /home/unified> kubectl --names ingress-calc get services -o wide nginx-ingress-ingress-nginx-controller

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
nginx-ingress-ingress-nginx-controller LoadBalancer 10.06.223.20 40.80.77.145 80:30972/TCP,443:30653/TCP 46m app.kubernetes.io/compone
nt=controller,app.kubernetes.io/instance=nginx-ingress,app.kubernetes.io/name=ingress-nginx

We can reach the calculator UI because our traffic is routed from the root URL to the website page by NGINX ingress

controller.

Num

0 |

Operator
[+ |
Num?2

C |

Calculate!

Answer

® Once we press the calculate button, it will send a HTTP POST request to /api. Similarly, the traffic to /apiis routed
to the API service by the NGINX ingress controller. The answer is calculated by the backend API. Responded
answer is taken by the frontend website and used to generate a pop up on the site.

Challenges Faced :-

Ap P

Configuration complexity when setting up AKS clusters and managing multiple deployments.
Ensuring seamless communication between frontend and backend services.

Handling and configuring the NGINX Ingress Controller for proper routing.

Setting up AKS clusters and managing deployments presented configuration complexities.
Coordinating communication between frontend and backend services required careful configuration.

Business Benefits :-

Noohwp

Increased operational efficiency through containerization and automated deployment.
Enhanced scalability and flexibility in managing application workloads.

Improved resource utilization and cost optimization with Kubernetes orchestration.
Streamlined traffic routing and load balancing for a seamless user experience
Containerization and automation improved operational efficiency and scalability.
Kubernetes orchestration enhanced resource utilization and cost optimization.

NGINX Ingress Controller streamlined traffic routing, ensuring a seamless user experience

