

Deploy a Full Stack Web App to Azure Kubernetes

Service with Dockerhub Images

- Ismail Shaikh (Senior Cloud Engineer)

Introduction

In this blog i will walk you through the process of getting a full-stack application up and running on AKS. Our sample

calculator app has a separated React frontend and Flask backend. Both of them are built through Docker and pushed

to Docker Hub but first we will start with basic understanding

What is Kubernetes?

Kubernetes is an open source container orchestrator that automates many tasks involved in deploying, managing, and

scaling containerized applications.

What is Azure Kubernetes Service?

Azure Kubernetes Service is a managed container orchestration service based on the open source Kubernetes system,

which is available on the Microsoft Azure public cloud. Using AKS simplifies the process of running Kubernetes on

Azure without needing to install or maintain your own Kubernetes control plane. An organization can use AKS to

handle critical functionality such as deploying, scaling and managing Docker containers and container-based

applications.It provides a hosted Kubernetes cluster that you can deploy your microservices to.

Pre-Requisiste :

• Azure Kubernetes Service

• NGINX Ingress Controller

• Azure CLI

• Kubectl, Helm

• React frontend, Flask backend

Overview

We will create two Kubernetes deployments, one for the React frontend and the other for the Flask API. Two

Kubernetes services will also be created for us to access the deployed application.

After having both frontend and backend running on AKS cluster, we will create an ingress resource to route traffic to

each application. By using an ingress controller and ingress rules, a single IP address can be used to route traffic to

multiple services in a Kubernetes cluster.

Getting Started

Step 1:- Create AKS Cluster

The first thing we have to do is create an AKS cluster. After creating a resource group in your preferred region, we can

create an AKS cluster with a similar method. Personally, I like to create it with the UI, which is a pretty straightforward

approach with the friendly Azure Portal Interface. Or you can also create it with Azure CLI following the Microsoft

Docs.

In the next step we will create out own customize node pole.

Step 2:- Connect to Cluster

We will use kubectl to manage the Kubernetes cluster. Run the command below in Azure CLI Powershell Mode to

configure kubectl and connect to the cluster we previously created.

az aks get-credentials --resource-group YourResourceGroup --name Calculator

Step 3:- Create an NGINX Ingress Controller

Create a K8s namespace for the ingress resources

kubectl create namespace ingress-calc

Add the ingress-nginx repository

helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx

Use Helm to deploy an NGINX ingress controller

helm install nginx-ingress ingress-nginx/ingress-nginx \

 --namespace ingress-calc \

 --set controller.replicaCount=2 \

 --set controller.nodeSelector."beta\.kubernetes\.io/os"=linux \

 --set defaultBackend.nodeSelector."beta\.kubernetes\.io/os"=linux

Step 4:- Run the Application

⚫ Application is deployed by applying a YAML file to the cluster. The two deployments and each corresponding

service are created using the YAML file below.

⚫ In this example, we create this file by typing code calculator.yaml on Azure CLI. Paste the manifest below and save

it. Please note that on line 17 and line 54, we are pulling the prebuilt image from Docker Hub. Feel free to use your

own image.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: api

spec:

 replicas: 3

 selector:

 matchLabels:

 app: api

 template:

 metadata:

 labels:

 app: api

 spec:

 containers:

 - name: api

 image: shaikh1996/calculator_api:latest

 resources:

 requests:

 cpu: 100m

 memory: 128Mi

 limits:

 cpu: 250m

 memory: 256Mi

 ports:

 - containerPort: 80

apiVersion: v1

kind: Service

metadata:

 name: api

spec:

 ports:

 - port: 80

 selector:

 app: api

apiVersion: apps/v1

kind: Deployment

metadata:

 name: website

spec:

 replicas: 3

 selector:

 matchLabels:

 app: website

 template:

 metadata:

 labels:

 app: website

 spec:

 containers:

 - name: website

 image: shaikh1996/calculator_site:latest

 resources:

 requests:

 cpu: 100m

 memory: 128Mi

 limits:

 cpu: 250m

 memory: 256Mi

 ports:

 - containerPort: 3000

apiVersion: v1

kind: Service

metadata:

 name: website

spec:

 ports:

 - port: 3000

 selector:

 app: website

⚫ Run the frontend and backend in the namespace we created using kubectl apply

kubectl apply -f calculator.yaml --namespace ingress-calc

Step 6:- Create an Ingress Route

Both the frontend and backend are now running on the Kubernetes Cluster. Now we create an ingress resource to

configure the rules that route traffic to our website and API. Run code ingress.yaml

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: calculator-ingress

 namespace: ingress-calc

 annotations:

 kubernetes.io/ingress.class: nginx

 nginx.ingress.kubernetes.io/ssl-redirect: "false"

 nginx.ingress.kubernetes.io/use-regex: "true"

 nginx.ingress.kubernetes.io/rewrite-target: /$1

spec:

 rules:

 - http:

 paths:

 - path: /?(.*)

 pathType: ImplementationSpecific

 backend:

 service:

 name: website

 port:

 number: 3000

 - path: /api/?(.*)

 pathType: ImplementationSpecific

 backend:

 service:

 name: api

 port:

 number: 80

We route the traffic from the root URL to our website service. Similarly, we route the traffic from /api to our API service.

⚫ Apply this command to create the ingress resource

kubectl apply -f ingress.yaml

⚫ The Kubernetes load balancer service is created for the NGINX ingress controller, we can access our app with the

assigned dynamic public IP address.

kubectl --namespace ingress-calc get services -o wide -w nginx-ingress-ingress-

nginx-controller

⚫ Open up your browser go to the external ip address and boom.

We can reach the calculator UI because our traffic is routed from the root URL to the website page by NGINX ingress

controller.

⚫ Once we press the calculate button, it will send a HTTP POST request to /api. Similarly, the traffic to /apiis routed

to the API service by the NGINX ingress controller. The answer is calculated by the backend API. Responded

answer is taken by the frontend website and used to generate a pop up on the site.

Challenges Faced :-

1. Configuration complexity when setting up AKS clusters and managing multiple deployments.
2. Ensuring seamless communication between frontend and backend services.
3. Handling and configuring the NGINX Ingress Controller for proper routing.
4. Setting up AKS clusters and managing deployments presented configuration complexities.
5. Coordinating communication between frontend and backend services required careful configuration.

Business Benefits :-

1. Increased operational efficiency through containerization and automated deployment.
2. Enhanced scalability and flexibility in managing application workloads.
3. Improved resource utilization and cost optimization with Kubernetes orchestration.
4. Streamlined traffic routing and load balancing for a seamless user experience
5. Containerization and automation improved operational efficiency and scalability.
6. Kubernetes orchestration enhanced resource utilization and cost optimization.
7. NGINX Ingress Controller streamlined traffic routing, ensuring a seamless user experience

